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Abstract

The geometry of Lagrangian systems, whose Legendre map possesses generic singularities, is
studied. On its basis the Transition Principle, prescribing the behaviour of phase trajectories on the
singular hypersurface, is proposed. The notion of relative Hamiltonian vector field associated with an
arbitrary Lagrangian is studied and in particular applied to the constraint algorithm. © 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

The Legendre mapL of agenericLagrangian is, according to a well-known fact of Singu-
larity Theory, just alocal diffeomorphism except for a singular hypersurfaceS along which
it inevitably degenerates. We callsingularthe Lagrangians of this kind to distinguish them
from those whose Legendre maps are everywhere degenerate. The latter are theconstrained
Lagrangians and were widely studied (the Dirac–Bergmann theory [2,9]) due to their fun-
damental importance for gauge theories, etc. On the contrary, singular Lagrangians were
studied just in a few works (see, for instance, [7]), in spite of the fact that they appear not
infrequently in the literature, for instance, in various post-Galilean models (see [1,3,12]).
However, the principal question of thesingular Lagrangiandynamics has not yet, to our
knowledge, been answered. Namely, what happens to a phase trajectory when it reaches the
singular hypersurfaceS. It seems that this question cannot be resolved on the basis of the
standard variational approach because for this purpose one must prescribe ad hoc from the
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very beginning the class of admissible curves-trajectories. As a rule Nature rejects such a
human dictate. In this paper we study the natural geometry of singular Lagrangian systems,
which suggests the Transition Principle (see Section 4.2), a prescription for what a phase
trajectory must do when reachingS.

More exactly, we formulate this principle only for generic singular Lagrangians. In such
a case, the Legendre map has at a generic point ofS a stable singularity of the fold-type. The
Transition Principle forces a phase point reachingS at a generic point to make a jump to
another precisely prescribed point ofS, in order to continue a “normal” smooth motion up
to a possible subsequent jump, etc. In such a jump the system changes not only its momenta
as it occurs in various collision, reflection and refraction processes, but also its space–time
coordinates. Such a behaviour, it seems, contradicts the common sense, but the naturality
of the underlying geometry strongly suggests testing it experimentally. As we show below,
the Hamiltonian version of the Transition Principle is perfectly confirmed in this sense. In
[8] we studied in detail the dynamics of a post-Galilean harmonic oscillator based on the
Transition Principle. The results obtained there show the phase portrait of this system to be
intrinsically self-consistent. We also note that, independent of the possible physical rele-
vance, the dynamical systems constructed on the basis of the Transition Principle generalize
naturally billiard systems and as such renew the park of mathematical toys to enjoy.

By studying the geometry of singular Lagrangians we observe a simple but, it seems,
very important fact: any Lagrangian, however degenerate it is, admits the corresponding
Hamiltonian field, which is arelativeone along the Legendre map (in this connection see
also [13–17]). We demonstrate its utility by describing by its help the constraint algorithm
for constrained Lagrangians in few lines (in this connection see also [13].

Finally, it is worth stressing that the analogue of the presented formalism can be developed
in field theory as well, which we hope to do in a separate paper.

2. Relative Hamiltonian vector field

2.1. Relative vector fields

The notion of relative vector field is a key one for our purposes. Let us recall it briefly. Let
M andN be two differentiable manifolds and letF : M → N be a smooth map. Arelative
vector field on N along Fis by definition a derivation of the algebraC∞(N) with values in
the algebraC∞(M), considered as aC∞(N)-module with respect to the multiplication

φf =
def

F ∗(φ)f, f ∈ C∞(M), φ ∈ C∞(N).

In other words, anR-linear operator

X : C∞(N) → C∞(M)

is a relative vector field alongF if it satisfies the Leibniz rule

X(fg) = F ∗(f )X(g) + F ∗(g)X(f ), f, g ∈ C∞(N),
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If f ∈ C∞(M) andX is a relative vector field alongF , thenfX is also a relative vector field.
Therefore, relative vector fields alongF form aC∞(M)-module denoted byD(N, M; F).
SinceC∞(M) is aC∞(N)-module,D(N, M; F) can be considered as aC∞(N)-module:
(X, g) 7→ F ∗(g)X, g ∈ C∞(N).

Example 2.1.D(M, M; idM) coincides with theC∞(M)-moduleD(M) of vector fields
onM.

Example 2.2. LetM ⊂ N be a submanifold, thenD(M, N; σ), σ being the inclusion map,
is theC∞(M)-module of smooth fields of vectors tangent toN at points ofM.

Example 2.3. If X ∈ D(M) and F : M → N is a smooth map, thenX ◦ F ∗ ∈
D(N, M; F).

Example 2.4. If Y ∈ D(N), thenF ∗ ◦ Y ∈ D(N, M; F).

As in the case of usual vector fields, one can associate with each relative vector field
X ∈ D(N, M; F) the section

x ∈ M 7→ Xx ∈ TF(x)(N)

of the pullbackF ∗(π) of the tangent bundleπ : T (N) → N given by

Xx(g)=
def

[X(g)](x) ∀g ∈ C∞(N).

The same formula, read from right to left, associates with each section ofF ∗(π) an
element ofD(N, M; F). ThusD(N, M; F) may be identified with theC∞(M)-module
0(F ∗(π)) of smooth sections ofF ∗(π). This identification shows that a relative vector
field X can be expressed in terms of local coordinates as follows. Let(x1, . . . , xm) and
(y1, . . . , yn) be the local coordinates onM andN , respectively. Then

X =
n∑

i=1

Xi(x)
∂

∂yi

∣∣∣∣
F(x)

,

or, equivalently

X =
n∑

i=1

Xi(x)

(
F ∗ ◦ ∂

∂yi

)
,

with Xi ’s being smooth functions onM.
Let Ft : M → N , F0 = F , be a deformation ofF . Then the operator

dF ∗
t

dt

∣∣∣∣
t=0

: C∞(N) → C∞(M)

is, as it is easy to see, a relative (alongF ) vector field onN . Conversely, any relative vector
field can be represented in this form. By this reason, relative vector fields alongF are
interpreted naturally as infinitesimal deformations ofF .
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A number of natural operations with differential forms, general covariant tensor fields,
etc., involving usual vector fields can be extended to relative vector fields. For instance, if
X ∈ D(N, M; F) theC∞(N)-homomorphism

iX : 3k(N) → 3k−1(M)

between the module ofk-forms onN and that of(k − 1)-forms onM is defined by

(iX(ω))(X1, . . . , Xp−1)(x)=
def

ωF(x)(Xx, dxF (X1|x), . . . , dxF (Xp−1|x))

with Xi ∈ D(M), x ∈ M. As in the usual case, we will sometimes writeX |ω instead of
iX(ω).

If X = Y ◦ F ∗, with Y ∈ D(M), then, obviously,

X |ω = Y |F ∗(ω).

Similarly, if X = F ∗ ◦ Z, with Z ∈ D(N), then

X |ω = F ∗(Z |ω).

Evidently, it holds

iX(ω ∧ ρ) = iX(ω) ∧ ρ + (−1)degωω ∧ iX(ρ). (1)

Now the Lie derivative ofω ∈ 3k(N) alongX is defined as

LX(ω) = X(ω)=
def

X |dω + d(X |ω) ∈ 3k(M).

The Leibniz rule forLX

LX(ω ∧ ρ) = LX(ω) ∧ ρ + ω ∧ LX(ρ),

results easily from (1).
In fact, the Lie derivative along a relative fieldX can be defined for any natural covariant

field, for instance for covariant tensors. In the last case the Leibniz ruleLX(ϑ ⊗ τ) =
LX(ϑ) ⊗ τ + ϑ ⊗ LX(τ) gives the inductive definition of the Lie derivative for general
covariant tensor fields.

2.2. Relative Hamiltonian vector field

In this section is introduced a relative vector field along the Legendre map, which gener-
alizes the notion of Hamiltonian vector field and is a very useful tool for studying degenerate
Lagrangians. A geometrical construction equivalent to this notion was already considered
in [13–16] following a suggestion by Kamimura [17]. In particular, in [13–15] some appli-
cations to constrained systems were given.

Let M be the configuration space of a dynamical system, described by the Lagrangian
L ∈ C∞(T (M)). Consider the Legendre map associated withL:

L : T (M) → T ∗(M)
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defined by

[L(ξ)](η)=
def

(dξL)(αξ (η)), ξ, η ∈ Tq(M), q ∈ M,

whereαξ : Tq(M) → Tξ (Tq(M)) is the canonical isomorphism between the vector space
Tq(M) and the space tangent to it at a pointξ . L is locally described by equations:

qi = qi, pi = Lvi
(q, v),

where(q1, . . . , qn) is a local chart ofM and(q, v), (q, p) are the corresponding charts
onT (M) andT ∗(M), respectively. The differential ofL is expressed with respect to such
coordinates by the matrix

(dL)(q,v) =
∥∥∥∥ 1 0

Lvq Lvv

∥∥∥∥ , (2)

where1, 0are then×n identity and null matrices, respectively, andLvq = (Lviqj
)i,j=1,... ,n,

Lvv = (Lvivj
)i,j=1,... ,n.

Associate withL the following relative vector field alongL:

XL =
def

∑
i

vi

∂

∂qi

∣∣∣∣L(q,v)

+
∑

i

Lqi
(q, v)

∂

∂pi

∣∣∣∣L(q,v)

. (3)

This field is called therelative Hamiltonian fieldassociated withL by the reasons below.

Proposition 2.5. XL does not depend on the choice of local coordinates on M and N.
Hence, the correspondenceL 7→ XL is a natural differential operator.

Proof. Namely, one must check that the components(v, Lq)ofXL in the basis(∂/∂q, ∂/∂p)

of TL(q,v)(T
∗(M)) change according to the transformation rules induced by a change of

coordinatesq 7→ q ′ = q ′(q). It is easy to see that if

ξ =
∑

i

ai

∂

∂qi

+
∑

i

bi

∂

∂pi

=
∑

i

a′
i

∂

∂q ′
i

+
∑

i

b′
i

∂

∂p′
i

is a vector tangent toT ∗(M), then

a′
j =

∑
i

∂q ′
j

∂qi

ai, (4a)

b′
j =

∑
i

[∑
k

∂

∂qi

(
∂qk

∂q ′
j

)
pk

]
ai +

∑
i

∂qi

∂q ′
j

bi, (4b)

and

v′
j =

∑
i

∂q ′
j

∂qi

vi, (5)
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for j = 1, . . . , n. So, one has to check that (4a) and (4b) hold forai = vi , bi = Lqi
(q, v),

a′
i = v′

i , b′
i = Lq ′

i
(q ′, v′), (q, p) = L(q, v). Eqs. (4a) coincide with (5). As for (4b) one

has

Lq ′
j
(q ′, v′) = ∂

∂q ′
j

(L(q(q ′), v(q ′, v′))) =
∑

i

Lqi

∂qi

∂q ′
j

+
∑

k

Lvk

∂vk

∂q ′
j

=
∑

i

Lqi

∂qi

∂q ′
j

+
∑

k

pk

∂vk

∂q ′
j

. (6)

But in view of (5)

∂vk

∂q ′
j

=
∑

i

∂2qk

∂q ′
i∂q ′

j

v′
j =

∑
i

∂2qk

∂q ′
i∂q ′

j

∑
r

∂q ′
i

∂qr

vr =
∑

r

∂

∂qr

(
∂qk

∂q ′
j

)
vr , (7)

which shows (6) to be identical to (4b) in the considered situation. �

Let

E(q, v)=
def

n∑
i=1

viLvi
(q, v) − L(q, v) (8)

be the energy function associated with LagrangianL.

Proposition 2.6. Let L be non-singular, i.e.L is a diffeomorphism. Then

XL = L∗ ◦ XH ,

whereXH is the Hamiltonian vector field onT ∗(M) corresponding toH = (L−1)∗(E).

Proof. A straightforward computation shows that

XL |� = −dE, (9)

where� = ∑
idpi ∧ dqi is the canonical two-form onT ∗(M). By applying now(L−1)∗

to (9) one obtains

((L−1)∗ ◦ XL) |� = −dH.

SinceXH is by definition the unique solution of

XH |� = −dH,

one can conclude that

XH = (L−1)∗ ◦ XL. �

It is worth stressing that Eq. (9) defines the vector fieldXL uniquely up to a relative
field Y such thatY |� = 0. Since� is non-degenerate theC∞(M)-moduleDL of relative
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vector fields alongL that annihilate� is generated by relative fields of the formL∗ ◦ Z,
with Z ∈ D(T ∗(M)) such thatL∗(Z |�) = 0. The last condition means thatZ |� ∈
31
L(T ∗(M)), with

31
L(T ∗(M)) = {ω ∈ 31(T ∗(M))|L∗(ω) = 0}.

Note that for a generic Lagrangian functionL the corresponding Legendre map is a local dif-
feomorphism except for a nowhere dense subset ofT (M). Obviously,31

L(T ∗(M))|ImL = 0
for such a Lagrangian. So, the relative Hamiltonian fieldXL is uniquely defined by (9) for a
generic LagrangianL. On the contrary, solution of (9) is not unique iff31

L(T ∗(M))|ImL 6=
0, which is equivalent to the fact thatL degenerates on an open subset ofT (M). This
discussion, together with Proposition 2.6, shows that (9) admits a uniquenatural solution,
namelyXL.

If

X =
∑

i

ai(q, v)
∂

∂qi

+
∑

i

bi(q, v)
∂

∂pi

,

then Eq. (9) looks in terms of local coordinates as∥∥∥∥Lqv −1
Lvv 0

∥∥∥∥
∥∥∥∥ a

b

∥∥∥∥ =
∥∥∥∥Eq

Ev

∥∥∥∥ ,

with a = (a1, . . . , an), b = (b1, . . . , bn).

2.3. An application: the constraint algorithm

We conclude this section by sketching how the relative Hamiltonian formalism can be
used to determine the consistency conditions for constrained Lagrangian systems. The
constraint algorithmso obtained is, of course, a well-known procedure, going back to
the Dirac–Bergmann theory of constrained Hamiltonians, and revisited later on by several
authors (see [6,13] and the references therein). However, the geometric interpretation of
the algorithm by means of the relative Hamiltonian vector field looks more natural and
transparent than the previous ones.

It is useful to notice that the Euler–Lagrange equations∥∥∥∥ 1 0
Lvq Lvv

∥∥∥∥
∥∥∥∥ q̇

v̇

∥∥∥∥ =
∥∥∥∥ v

Lq

∥∥∥∥ (10)

corresponding to the LagrangianL can be represented in an invariant form as

ZL ◦ L∗ = XL, (11)

with ZL = q̇(∂/∂q) + v̇(∂/∂v) being the vector field onT (M) whose integral curves are
the phase trajectories. Notice that, ifL is a constrained Lagrangian, i.e.|Lvv| = 0 on the
whole phase space, then there is, in general, no vector fieldZL ∈ D(T (M)) satisfying Eq.
(11). However, there may exist a maximal submanifoldW ⊂ T (M) and a vector field̃ZL ∈
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D(W) satisfying (11). The constraint algorithm enables one to find such a submanifold by
a finite number of steps. First, notice that in view of Eq. (11)W can be characterized as the
maximal submanifold such thatXL|W is tangent toL(W). Consider the sequence{Wr} of
submanifolds ofT (M), defined by induction as follows:
1. W1 = T (M),

2. Wr+1 = {x ∈ Wr |XL|x is tangent toL(Wr)}.
Obviously, this sequence stabilizes in a finite number of steps. If the lastWr is not

empty, it coincides withW . Notice that the above formulation of the constraint algorithm
is more agreeable, from the computational point of view, than the standard approach (see,
for instance, [6]). In fact, ifL(Wr) is given by independent equations

gi(q, p) = 0, i = 1, . . . , s,

with s being the codimension ofL(Wr), then the next termWr+1 of the sequence is given
simply by the equations

gi(L(q, v)) = 0, XL(gi)(q, v) = 0, i = 1, . . . , s.

It can be shown that the procedure above is equivalent to the standard reduction of a differ-
ential equation to the formally integrable form.

That given above is just an example of the usefulness of the relative Hamiltonian formal-
ism in the study of constrained systems and gauge theories. A more detailed exposition of
these topics will be given in a separate paper.

3. Singular Lagrangians

In this section we consider a special but important class of non-regular Lagrangians,
whose Legendre maps degenerate only along submanifolds of codimension≥ 1. This class
contains all generic Lagrangians. We use the term “singular” for such Lagrangians, reserving
the term “degenerate” only for the Lagrangians with everywhere degenerated Legendre map.

3.1. Submersions with folds

First, recall briefly some basic facts from the theory of stable mappings, which will be
needed below (for further details and proofs see, for instance, [5]).

Let M, N be two manifolds, with dimM = m ≥ dimN = n and let

F : M → N

be a smooth map. Denote byJ 1(M, N) the space of 1-jets of maps fromM to N . If
(x1, . . . , xm), (y1, . . . , yn) are two local charts onM andN , respectively, then a system
of local coordinates onJ 1(M, N) is given by(x, y, p), wherep = (pij ), i = 1, . . . , n,
j = 1, . . . , m. Let us consider the 1− jet graphof F , i.e. the map

j1F : M → J 1(M, N)
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given in local coordinates by

j1F(x)=
def

(
x, F (x),

∂F

∂x
(x)

)
.

Let S1 ⊂ J 1(M, N) be the submanifold of 1-jets of corank 1, i.e.

S1 = {(x, y, p) ∈ J 1(M, N)|rankp = n − 1}.
Let S1(F ) = (j1F)−1(S1). We assume thatj1F is transversalto S1, i.e.

Im dxj
1F + TF(x)(S1) = TF(x)J

1(M, N) ∀x ∈ S1(F ). (12)

In terms of local coordinates, condition (12) is equivalent to the fact that the minors of order
n of the Jacobian matrix∂F/∂x, which vanish onS1(F ), have only simple zeroes on it.
ThenS1(F ) is a submanifold ofM having the same codimension, namelym − n + 1, asS1

in J 1(M, N) [5].

Definition 3.1. A point x ∈ S1(F ) is called a fold point if

Tx(S1(F )) + KerdxF = Tx(M).

Definition 3.2. A smooth mapF : M → N is a submersion with folds if it satisfies
condition (12) and its singularities are fold points only. In such a case the submanifold
S1(F ) defined above is called the fold locus ofF .

Remark. An obvious consequence of the definition is that the restriction of a submersion
with folds to its fold locus is an immersion.

Below we will use the following property of submersions with folds [5].

Theorem 3.3. Let F : M → N be a submersion with folds and leta ∈ S1(F ). Then
there exist a system of local coordinates(x1, . . . , xm) in a neighbourhood of a and a
system of local coordinates(y1, . . . , yn) in a neighbourhood ofF(a) such that:(1) a ≡
(0, . . . , 0), F (a) ≡ (0, . . . , 0); (2) the coordinate expression of F is

y1 = x1,

. . .

yn−1 = xn−1,

yn = x2
n ± · · · ± x2

m.

3.2. Legendre maps with fold-type singularities

Referring to Section 2.2 for the notations, consider the case when dL is regular everywhere
except for a hypersurfaceS ⊂ T (M). From (2) it follows thatS is given by the equation:

H(q, v) = 0,
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whereH(q, v) = detLvv. AssumeS to be regular, i.e. that

dxH 6= 0 ∀x ∈ S. (13)

Assume additionally the following transversality condition:

KerdxL ∩ Tx(S) = {0} ∀x ∈ S. (14)

It follows from (14), in particular, that the rank of the matrixLvv isn−1, i.e. dim Ker dL = 1
at any point ofS, and thatL|S is a local diffeomorphism betweenS andL(S). Hence,L is
a submersion with folds and according to Theorem 3.3 it can be represented locally in the
normal form

y1 = x1,

. . .

y2n−1 = x2n−1,

y2n = x2
2n,

(15)

with respect to suitable local charts(x1, . . . , x2n) and(y1, . . . , y2n) onT (M) andT ∗(M),
respectively. In view of (15) one easily finds that for every pointx ∈ S there exists a
neighbourhoodU of x in T (M) and a neighbourhoodV of L(x) in L(T (M)) such that: (1)
U\S splits into two connected componentsU1,U2 such thatL(U1) = L(U2) = V \L(U∩S)

and (2)LUi
is a diffeomorphism,i = 1, 2.

In other words, ifL is a submersion with folds, thenL(S) locally separates the image
of L from its “local” complement inT ∗(M). As we shall see below, this almost obvious
property of Legendre maps with folds is essential to carry over the Transition Principle from
the Hamiltonian to the Lagrangian setting.

3.3. Kernel of the Legendre map and characteristics on the singular hypersurface

As it was remarked above, ifL has only fold-type singularities then KerdxL is one-
dimensional and transversal toS at any pointx ∈ S. We will now point out some interesting
properties of the kernel and consider its relation with the characteristic distribution onS

which, as we shall see, plays a fundamental role in the Transition Principle.
The following assertion is valid for an arbitrary Lagrangian.

Proposition 3.4. Ker dL is tangent to the level surfaces of energy at any point of S.

Proof. According to (2) one has

KerdxL =
{

b
∂

∂v
∈ Tx(T (M))

∣∣∣∣Lvvb = 0

}
, (16)

with the standard matrix notation. On the other hand, it results from (8) that

Ev = Lvvv, (17)

which shows thatbTEv = 0. �
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Recall now the notion of characteristic distribution onS, introduced in [8]. Let� =∑
idpi ∧ dqi be the canonical two-form onT ∗(M). ThenL∗(�) is a closed two-form on

T (M) degenerate at points ofS. More exactly, we have the following proposition.

Proposition 3.5. Letx ∈ S and letNull L∗(�)x be the null space ofL∗(�)x , i.e.

Null L∗(�)x = {ξ ∈ Tx(T (M))|ξ |L∗(�)x = 0}.

ThenNull L∗(�)x is two-dimensional and containsKerdxL.

Proof. In special coordinates(q, v) the pullback of� takes the form

L∗(�) =
∑
i<j

(Lvj qi
− Lviqj

) dqi ∧ dqj −
∑
i,j

Lvivj
dqi ∧ dvj .

Hence NullL∗(�)x consists of the vectorsa(∂/∂q) + b(∂/∂v) ∈ Tx(T (M)) such that∥∥∥∥Lvq − Lqv Lvv

Lvv 0

∥∥∥∥
∥∥∥∥ a

b

∥∥∥∥ =
∥∥∥∥ 0

0

∥∥∥∥ . (18)

Comparing (16) and (18) one sees that KerdxL ⊆ Null L∗(�)x . This shows thatL∗(�)x

is degenerate ifx ∈ S and hence the rank ofL∗(�)x is not greater than 2n − 2. But since
L|S : S → L(S) is a diffeomorphism one has

2n − 2 = rank(�|L(S))L(x) = rank(L∗(�)|S)x.

This shows that rankL∗(�)x ≥ 2n − 2. �

An immediate consequence of the Proposition 3.5 is that NullL∗
x(�) is transversal to

Tx(S), so that their intersection is a linelx tangent toS. This way we get a one-dimensional
distributionx 7→ lx onS, calledcharacteristic distribution, and its integral curves are called
characteristic curvesor characteristicsof S.

The characteristics are non-parametrized curves transversal to the fibres ofT (M) and
hence projecting biunivocally intoM. Letγ : I ⊂ R → T (M) be a characteristic ofS and
let γ̃ = π ◦ γ be its projection intoM. The problem of determining under what conditions
is γ a lifting of γ̃ , i.e.

γ = λ ˙̃γ (19)

for someλ ∈ C∞(I ), is related with the variational interpretation of the Transition Principle.

Theorem 3.6. Let L ∈ C∞(T (M)) be a singular Lagrangian with folds. The following
three conditions are equivalent:
(a)Any characteristic of S is the lifting of its projection into M.
(b)Any pointx ≡ (q, v) ∈ S, considered as an element ofTx(Tq(M)), belongs toKerdxL.
(c) The fibresTx(M) ⊂ T (M) are tangent to the energy level surfaces at any point of S.
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Proof. Equivalence of (b) and (c) obviously follows from (17). Let us prove the equivalence
of (a) and (b). Assume that (b) holds, i.e. that

Lvvv = 0 on S. (20)

Let γ (t) ≡ (q(t), v(t)) be a characteristic curve ofS. We have to show that

v(t) = λ(t)q̇(t). (21)

The curveγ̄ = L◦γ is a characteristic of the hypersurfaceL(S) with respect to�, projecting
into the same curvẽγ of M asγ . Let

8(q, p) = 0, 8 ∈ C∞(T ∗(M))

be a (local) equation ofL(S). Then the Hamiltonian fieldX8 = 8p∂/∂q − 8q∂/∂p is
tangent toγ̄ . By reparametrizingγ , if necessary, we can assume thatt 7→ γ̄ (t) coincides
with the parametrization of̄γ as an integral curve ofX8. As it is immediately seen from
the normal form (15) ofL, it holds (locally) that

L∗(8) = fH2 (22)

for somef ∈ C∞(T (M)). Hence, differentiating (22) with respect toqi andvi , one finds
that, onL(S),∥∥∥∥Lqv −1

Lvv 0

∥∥∥∥
∥∥∥∥ 8p

−8q

∥∥∥∥ =
∥∥∥∥ 0

0

∥∥∥∥ ,

with the derivatives of8 taken atL(q, v) = (q, Lv(q, v)), (q, v) ∈ S. In particular,
Lvv8p = 0, so that from condition (20) and the fact that corankLvv = 1 it follows that
onS

8p = µv (23)

with µ ∈ C∞(S). But, according to Hamilton equations associated with8, 8p = q̇, so
that one gets (21), withλ = 1/µ. �

Corollary of the proof. Letγ (t)be a characteristic of S. Thenαγ (t)(q̇(t))∈Kerdγ (t)L,with
αγ (t) being the canonical identification ofTq(t)(M), q(t)=π(γ (t)), andTγ (t)(Tq(t)(M)).

Proof. It is sufficient to notice thatαγ (t)(q̇(t)) = 8p(L(γ (t))). �

This corollary suggests a natural way to parametrize characteristics ofS. Namely, letγ
be such a characteristic and̃γ be its projection. Any point(q, v) ∈ γ corresponds to a
vectorv(∂/∂q)|q , tangent toM (but not toγ̃ , in general) at the pointq ∈ γ̃ . But this vector
is canonically identified withv(∂/∂v)|(q,v) ∈ T(q,v)(Tq(M)), which can be univocally
represented as the sum of a vectorwq ∈ Ker(dL)(q,v) and another vector tangent toS.
In this way one associates with any pointq ∈ γ̃ a vectorwq ∈ T(q,v)(Tq(M)) ≡ Tq(M)

which, according to Theorem 3.6, is tangent toγ̃ . Hence we obtain a parametrization ofγ̃ ,
and consequently ofγ .
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Theorem 3.6 is illustrated with a special class of Lagrangians which appears frequently in
post-Galilean models of interacting particles [3,12]. One of them, a post-Galilean oscillator,
was considered in [8] with the purpose to exhibit the “jumping dynamics” resulting from
the Transition Principle.

Example 3.7. Consider Lagrangians of the form

L = L(q, Q(q, v)), (24)

where

Q(q, v) = 1
2vTG(q)v

is a pseudo-Riemannian metric onM, whose matrix is(1/2)G(q). So,G(q) is symmetric
and non-degenerate, for any pointq ∈ M. The singular setS of the corresponding Legendre
map coincides with the set of points at which the operator represented by the matrixLvv =
‖Lvivj

‖ has a non-trivial kernel. Note that

Lvv = L′G + L′′A, (25)

with then × n matrix A = A(q, v) = (Gv)(Gv)T, and the prime standing for∂/∂Q. If
v 6= 0, thenA is an operator of rank 1 whose image is generated by vectorGv while its kernel,
KerA, is composed of vectorsw such thatvTGw = 0. There are two qualitatively different
cases: (1)v /∈ KerA(q, v) ⇔ Q(q, v) 6= 0, and (2)v ∈ KerA(q, v) ⇔ Q(q, v) = 0. Let
us consider them separately.
1. In this case by identifyingTq(M) andT(q,v)(Tq(M)) ⊂ T (T (M)) we see that the latter

space is decomposed into the direct sum

T(q,v)(Tq(M)) = KerA(q, v) ⊕ {v},
with {v} = {w|w = λv,λ ∈ R}. So, if z = w + u, with w ∈ KerA(q, v), u ∈ {v}, then
according to (25):

Lvv(w + u) = G(L′w + (L′ + vTGvL′′)u).

Hence

w + u ∈ KerLvv ⇔ L′w + (L′ + vTGvL′′)u = 0. (26)

So, Kerd(q,v)L = KerLvv(q, v) 6= 0 in one of the following cases:
(i) L′ + 2L′′Q = 0, L′ 6= 0 ⇔ Kerd(q,v)L = {v}.
(ii) L′ = 0, L′ + 2L′′Q 6= 0 ⇔ Kerd(q,v)L = KerA(q, v).
(iii) L′ = L′ + 2L′′Q = 0 ⇔ Kerd(q,v)L = T(q,v)(Tq(M)).

As it is easy to see, in case (i) Ker dL is one-dimensional and is transversal to the
hypersurfaceS1 = {L′ +2L′′Q = 0} except for its submanifoldS0

1 = {3L′′ +2L′′′Q =
0}. So,S1\S0 is composed of fold points. On the contrary, Ker dL is tangent toS2 =
{L′ = 0}.
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2. It is convenient in this case to consider the direct decomposition

T(q,v)(Tq(M)) = KerA(q, v) ⊕ {Gv}, v 6= 0,

where ImA(q, v) = {Gv} = {z|z = λGv, λ ∈ R}. Note thatA(Gv) = λ(Gv) with
λ ∈ R. So, ifz = w + u, w ∈ KerA(q, v),u ∈ Im A(q, v), then in view of (25) one has

Lvv(z) = G(L′w + L′u) + λL′′u = G(L′w + L′u) + λµL′′Gv,

with u = µGv. This shows that

Lvv(z) = 0 ⇔ (L′w + λµL′′v) + L′u = 0.

SinceL′w+λµL′′v ∈ KerAwe see thatL′Au = 0. This implies that eitherL′(q, Q(v)) =
0 orA(q, v)u = 0, i.e.u = 0. In the last caseµ = 0 andL′w = 0 (w 6= 0), so we find
again thatL′ = 0. HenceS ∩ {Q(q, v) = 0} ⊂ S2.

Thus we see thatS = S1 ∪ S2 andS1\S0
1 consists of fold points, whileS2 is not a generic

singularity ofL.

3.4. Characteristic curves and symmetries

In this section it is shown that symmetries of a Lagrangian respect the characteristic curves
of its singular hypersurfaceS. Namely, the first integral of Euler–Lagrange equations cor-
responding to an infinitesimal symmetry of the Lagrangian is constant along characteristic
curves.

First, recall some definitions. LetF : M → M be a smooth map. Its natural liftings
F̃ : T (M) → T (M) andF̂ : T ∗(M) → T ∗(M) are defined by formulas

F̃ |Tq(M) = dqF, q ∈ M,

and

F̂ |T ∗
q (M) = (dqF ∗)−1, q ∈ M,

respectively. Obviously, ifF is a diffeomorphism, then such are alsoF̃ and F̂ . F is a
symmetryof a LagrangianL if F̃ ∗(L) = L. Further, it is easy to see that ifF is a symmetry
of L, then

L ◦ F̃ = F̂ ◦ L. (27)

Another relation we need is (see, for instance, [11])

F̂ ∗(ρ) = ρ, (28)

whereρ = ∑
pi dqi is the Liouville form onT ∗(M).

Similarly, any vector fieldX ∈ D(M) can be lifted canonically to bothT (M) andT ∗(M).
Denote these liftings bỹX ∈ D(T (M)) andX̂ ∈ D(T ∗(M)), respectively. If{Ft } is the
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flow generated byX, thenX̃ (resp.,X̂) is the vector field generating the flow{F̃t } (resp.,
{F̂t }). The infinitesimal analogue of (28) is

X̂(ρ) = 0. (29)

Recall thatX ∈ D(M) is called an infinitesimal (non-hidden) symmetry ofL if

X̃(L) = 0.

If X ∈ D(M) is an infinitesimal symmetry ofL, then

X̃ ◦ L∗ = L∗ ◦ X̂, (30)

which is the infinitesimal analogue of (27).
According to Noether’s theorem, the function

IX = L∗(ρ)(X̃) (31)

is a first integral of the Euler–Lagrange equations.

Theorem 3.8. IX is constant along the characteristics of S.

Proof. SinceX̂(ρ) = X |dρ + d(X̂ |ρ), from (29)–(31) we get

dIX = −X̃ |L∗(�).

Hence, ifx ∈ S andξ ∈ Tx(S) is a characteristic vector, then

ξ(IX) = −L∗(�)x(X̃x, ξ) = 0. �

4. Transition Principle

The Transition Principle discussed in this section is a prescription describing the be-
haviour of a dynamical system in someirregular situations when the standard “smooth”
principles are no longer applicable. This principle was introduced by one of the authors
(see [10]) in the context of Hamiltonian mechanics when the Hamiltonian function is
discontinuous. The examples given below and in [8,10] show it to be “experimentally”
confirmed. On the other hand, the concept of relative Hamiltonian vector field associ-
ated with a Lagrangian allows one to observe that the geometrical background of the
Hamiltonian Transition Principle is essentially the same as that for fold-singular Lagrangians.
This motivates the “Lagrangian” Transition Principle as it is presented below.

4.1. Hamiltonian formulation

Let us recall the Transition Principle for discontinuous Hamiltonians. Let(8, �) be a
symplectic manifold. Suppose that8 is divided by a hypersurface0 into two closed domains
8+, 8− and that the Hamiltonian function of the system is bi-valued on0. In other words,
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the restrictionsH± = H |8± areC∞-smooth in their respective domains, but they do not
necessarily coincide on the common boundary0.

Recall [11] that on0 is defined the one-dimensional distribution ofcharacteristic direc-
tions. Such distribution associates with each pointx ∈ 0 the characteristic line

lx =
def

{ξ ∈ Tx(8)|(ξ |�x)|Tx(0) = 0}.

The integral curves of this distribution are calledcharacteristicsof 0.

Definition 4.1. Letx ∈ 0. We say thatx is anin-point(resp. anout-point) for H+ if XH+|x
is directed towards8+ (resp. towards8−). Similarly, in-and out-points forH− are defined.

Definition 4.2. Let x ∈ 0 andE = H+(x). Denote byγx the characteristic of0 passing
throughx. A pointy ∈ γx is calleddecisivefor (x, H+) if it is an in-point forH+ (resp. for
H−) andH+(y) = E (resp.H−(y) = E). Analogously, one can define decisive points for
(x, H−).

Transition Principle (Hamiltonian formulation ).When the moving phase point reaches
from8+ (resp.,8−) the hypersurface0 at a point x, its trajectory is to be prolonged, starting
from any decisive point for(x, H+) (resp., (x, H−)), as the trajectory of the corresponding
Hamiltonian.

Remark. The Transition Principle is applied as well to the situation when the Hamiltonian
H is smooth but the phase space has a non-empty boundary∂8. In such a case one has just
to put formally0 = ∂8, 8+ = 8, 8−\0 = ∅, H+ = H andH− = ∞. In other words,
only in-and out-points forH+ = H are to be taken into consideration. Elastic collisions of
rigid bodies (see the example below) are described by the Transition Principle in this form.

It is worth stressing that, according to the Transition Principle, the phase trajectory gen-
erally splits into several parts after having reached the hypersurface0. Such behaviour is
not, however, abnormal and happens, for instance, in geometrical optics (see [8]) when a
light ray splits into reflected and refracted rays, in perfect accordance with the Transition
Principle.

We remark that from the above principle it follows that the energy of the system does not
change after an impact with0. In the example below we will see that in some special but
important cases also other first integrals of the equations of motion are preserved.

The Transition Principle can be modified naturally to take into account further peculiari-
ties of the studied physical system. For instance, the energy can be replaced by an alternative
constant of motion in the formulation of the principle, or some further rules describing the
energy balance in the process of impact may be added (non-elastic collisions, etc.).

Example 4.3(The Transition Principle for natural Hamiltonians). Let us consider the case
when8 = 8+ ∪ 8− is the cotangent bundleT ∗(M) of the configuration spaceM =
M+ ∪M− and0 = π−1(S), with S = ∂M+ ∩ ∂M− being a regular hypersurface inM and
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π : T ∗(M) → M being the bundle projection. Further, let each of the HamiltoniansH+,
H− be of the form

H±(q, p) = pTG±(q)p + V±(q), (32)

with V± ∈ C∞(M±) as the potential energy andG± as the Riemannian metric onM±
(kinetic energy). LetF(q) = 0 be the equation ofS and hence of0 too (more exactly,
π∗(F ) = 0 is the equation of0). Then the characteristics of0 are described by the
Hamilton equations

q̇i = Fpi
= 0, ṗi = −Fqi

(q)

together withF(q) = 0. Hence, the characteristic passing through the pointx̄ ≡ (q̄, p̄) ∈ 0

is the lineγx̄ ⊂ T ∗
q̄ (M) given in parametric form by

qi(t) = q̄i , pi(t) = p̄i − Fqi
(q̄)t.

Suppose that the phase point, coming from8+, reaches0 at the pointx̄. According
to the Transition Principle the part of the trajectory reflected from0 starts from the
in-points forH+ at which the characteristicγx̄ intersects the hyperquadricH+(q, p) =
H+(q̄, p̄). This intersection consists of the two pointsx̄ = x(0) andx∗ = x(t∗), with
t∗ = 2(F T

q G+p)/(F T
q G+Fq) (all the functions are evaluated atx̄). Note thatXH+(F ) =

−XF (H+) = 2F T
q G+p. Therefore,

x̄ = x∗ ⇔ XH+ tangent to0 at x̄ ⇔ γx̄ tangent to{H+ = H̄+} at x̄.

If x̄ 6= x∗, then

XH+(F )|x∗ = −2XH+(F )|x̄ ,
so that ifx̄ is an out-point forH+, x∗ is an in-point for it (and vice versa). Therefore, if the
phase point reaches0 at x̄ transversally, then according to the Transition Principle there
is one and only one “reflected” trajectory issuing fromx∗. As for “refracted” trajectories,
they can be two, one or none, depending on how the characteristic straight line intersects
the quadric{H−(q, p) = H+(x̄)}.

The following fact concerning the relation between symmetries ofH± and the charac-
teristics on0 is analogous to Theorem 3.8. So, we omit the proof. For the notation, see
Section 3.4.

Theorem 4.4. LetX ∈ D(M)be a non-hidden symmetry of the Hamiltonian H, i.e.X̂(H) =
0.Then the corresponding first integral of Hamilton equations, ρ(X̂) (see[11]), is constant
along the characteristics of0 iff X is tangent toS = π−1(0).

Example 4.5 (Elastic collisions between rigid bodies). LetC1, C2 be two rigid bodies
with perfectly smooth outer surfaces, and assume that in case of an impact between them
the total mechanical energy does not change (elastic collision). Then one can think of the
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12-dimensional configuration spaceM as the union of two domains:M+, corresponding
to the admissible configurations, in which the motion is described by a Hamiltonian of the
form (32); and a domainM−, formed by the configurations such that(C1 ∩ C2)

◦ 6= ∅,
with which one associates a potential energy “identically equal to+∞”. In other words,
the rigidity constraints do not allow for refracted trajectories.

The value of the momentap after a collision can obviously be determined in an elementary
way by taking into account the integrals of motion (total mechanical energy, projections
of linear and angular momenta). Apart from mechanical energy, all the other integrals are
associated with one-parameter groups of space symmetries of the system (invariance with
respect to translations and rotations), and it is evident that such isometry groups leave
fixed the hypersurfaceS = ∂M+ ∩ ∂M− of tangency configurations. Hence, according
to the Theorem 4.4, the corresponding first integrals is constant along the characteristics
of 0 = π−1(S). Therefore, by applying the Transition Principle we automatically get
the conservation of all the above integrals of motion. This also shows that the Transition
Principle leads to the same result as the classical theory in describing elastic collisions.
Moreover, it continues to work as well when the lack of symmetries does not allow symmetry
considerations.

4.2. Lagrangian formulation

The Transition Principle, originally considered only in the Hamiltonian case described
above, can be extended to the Lagrangian situation, as it has been shown for the first time
in [8]. Namely, suppose that a dynamical system is described by a singular Lagrangian
with folds as in Section 3.2. Then the motion of the system is uniquely determined out-
side the singular hypersurfaceS by Euler–Lagrange equation (10), or, equivalently, (11),
whereZL = q̇(∂/∂q) + v̇(∂/∂v) ∈ D(T (M)\S) is the Lagrangian vector field associated
with L. On the other hand, Eq. (10) cannot be solved uniquely with respect tov̇ on S. So
accelerations are undetermined onS, in general, and there are discontinuities in the mo-
tion. The Lagrangian formulation of the Transition Principle is a natural way to determine
these discontinuities. First, let us extend to the Lagrangian case the notion of in-and out-
points.

Definition 4.6. Let x ∈ S and let the neighbourhoodV of L(x) in L(T (M)) be given as at
the end of Section 3.2. A pointx ∈ S is called an in-point forL if XL|x is directed towards
V , and out-point otherwise.

XL is generally transversal toL(S) everywhere onS, except for a (possibly non-regular)
(2n−2)-dimensional submanifoldS1. This, in turn, contains a submanifoldS2 of dimension
(2n − 2) on whichXL is tangent atS1, etc., just as in the case of the constraint algorithm
(see Section 2.3).

Definition 4.7. Let x ∈ S. A point y ∈ S is called decisive forx if it is an in-point such
thatE(y) = E(x).
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Given the above definitions, the extension of the Transition Principle to the Lagrangian case
is obvious.

Transition Principle (Lagrangian formulation ). When the phase point reaches the
hypersurface S at a point x, its trajectory can be prolonged, starting from any point decisive
for x, as a trajectory of the Lagrangian vector fieldZL.

Recall that the characteristics of a singular LagrangianL are naturally parametrized
curves, according to the construction of Section 3.3. The physical meaning of this parameter
is at the moment not very clear. It seems natural to interpret it as the time during which the
phase point remains captured by the singular surfaceS.

Obviously, physical applications of the Lagrangian Transition Principle depend on whether
there exist physically meaningful Lagrangians with fold singularities. For instance, are
the singularities appearing in various post-Galilean models (see [3,12]) just the artifi-
cial by-products of the adopted approximation procedure? In other words, the dilemma is
whether the presence of singularities indicates only that the Lagrangian model is inadequate
or, on the contrary, a new phenomenon. An experimental test of it would be very interesting.
From the mathematical point of view, singular Lagrangian dynamical systems generalize
naturally the billiard systems and as such are worth being studied. In [8] such a dynamics
(post-Galilean oscillator) was studied in detail, showing its intrinsic self-consistency.

4.3. Transition Principle and the Weierstrass–Erdmann conditions

A natural question whether the singular Lagrangian dynamics based on the Transition
Principle corresponds to a variational problem is briefly discussed in this section. In fact,
functionals corresponding to singular Lagrange densities appear in various mathematical
problems and have been studied by various authors. The following classical theorem is one
of the main results in this direction.

Theorem 4.8(Weierstrass–Erdmann conditions).Consider the action functional

F(q)=
def

∫ b

a

L(q(t), q̇(t)) dt (33)

defined on the space of piecewise smooth functionsq : [a, b] → M with fixed end-points
q ′, q ′′ ∈ M. Let q̄(t) be an extremal forF , and suppose its derivative to have a jump
discontinuity att∗ ∈]a, b[. Then the following two conditions must be satisfied:
1. E(t∗−) = E(t∗+),
2. Lvi

(t∗−) = Lvi
(t∗+), i = 1, . . . , n,

wherebyf (t∗+), f (t∗−) we denote the right and left limit off at t∗, respectively, and the
energy E and momentaLvi

are evaluated on̄q(t).

Proof. See, for instance, [4]. �

According to Hamilton’s principle, the variational problem associated with the functional
(33) is equivalent to Euler–Lagrange equations outside the singular hypersurfaceS. On the
other hand, it is easy to see that the derivative of a broken extremalq̄(t) of F has a jump
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at t∗ only if (q̄(t∗), ˙̄q(t∗)) ∈ S. At a first glance, it would seem natural to interpret the
extremals of (33) on the class of piecewise smooth curves. However, such an assumption
presents serious drawbacks from the dynamical point of view. First, the behaviour of the
systemon S is not taken into any account. The natural geometrical structure described
above is simply ignored and the singular hypersurface itself is just considered as a “black
box”. Furthermore, the second Weierstrass–Erdmann condition is a consequence of an ad
hoc restriction on the class of possible trajectories. Namely, it is assumed that the extremal
curveq(t) has discontinuities only in the derivative, i.e. jumps of position are not allowed.
That this need not necessarily be the case is shown by the following example.

Example 4.9. Consider the Lagrangian function

L(q, v) = −mc2

√
1 − v2

c2
− kq2

(
1 + v2

2c2

)
, (34)

describing the motion of a one-dimensional relativistic oscillator in the post-Galilean ap-
proximation [7,8]. The constantsm, q, k, c are the mass and the charge of the oscillating
particle, the elastic constant and the light velocity, respectively. The energy function corre-
sponding to (34) is

E(q, v) = mc2√
1 − v2/c2

+ kq2
(

1 − v2

2c2

)
,

Fig. 1. The curves drawn by solid lines are{E = const} and its image alongL.
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while the equation ofS is

q2 = mc2

k(1 − v2/c2)3/2
.

As it is shown in Fig. 1, for a sufficiently high value of the energy the phase point reachesS at
the pointx̄ ≡ (q̄, v̄). Then, according to the Transition Principle, the motion continues after
the jump at the pointx∗ ≡ (q̄, −v̄). On the other hand, Weierstrass–Erdmann conditions tell
that after the system reachesx̄ its trajectory can be prolonged no more, becauseLv(x

∗) =
−Lv(x̄) 6= 0. In other words, time ceases to exist for this system. So, the Transition Principle
seems to be more reasonable in the dynamical context.
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