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Abstract

The geometry of Lagrangian systems, whose Legendre map possesses generic singularities, is
studied. On its basis the Transition Principle, prescribing the behaviour of phase trajectories on the
singular hypersurface, is proposed. The notion of relative Hamiltonian vector field associated with an
arbitrary Lagrangian is studied and in particular applied to the constraint algorithm. © 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

The Legendre mag of agenericLagrangian is, according to a well-known fact of Singu-
larity Theory, just docal diffeomorphism except for a singular hypersurfacdong which
it inevitably degenerates. We calhgularthe Lagrangians of this kind to distinguish them
from those whose Legendre maps are everywhere degenerate. The lattecaresttaned
Lagrangians and were widely studied (the Dirac—Bergmann theory [2,9]) due to their fun-
damental importance for gauge theories, etc. On the contrary, singular Lagrangians were
studied just in a few works (see, for instance, [7]), in spite of the fact that they appear not
infrequently in the literature, for instance, in various post-Galilean models (see [1,3,12]).
However, the principal question of tlengular Lagrangiandynamics has not yet, to our
knowledge, been answered. Namely, what happens to a phase trajectory when it reaches the
singular hypersurfacs. It seems that this question cannot be resolved on the basis of the
standard variational approach because for this purpose one must prescribe ad hoc from the

* Corresponding author.
E-mail addresspugliese@matna2.dma.unina.it (F. Pugliese)

0393-0440/00/$ — see front matter © 2000 Elsevier Science B.V. All rights reserved.
PIl: S0393-0440(99)00076-5



36 F. Pugliese, A.M. Vinogradov / Journal of Geometry and Physics 35 (2000) 35-55

very beginning the class of admissible curves-trajectories. As a rule Nature rejects such a
human dictate. In this paper we study the natural geometry of singular Lagrangian systems,
which suggests the Transition Principle (see Section 4.2), a prescription for what a phase
trajectory must do when reachiisy

More exactly, we formulate this principle only for generic singular Lagrangians. In such
acase, the Legendre map has at a generic pofhaattable singularity of the fold-type. The
Transition Principle forces a phase point reach$hgt a generic point to make a jump to
another precisely prescribed point$fin order to continue a “normal” smooth motion up
to a possible subsequent jump, etc. In such a jump the system changes not only its momenta
as it occurs in various collision, reflection and refraction processes, but also its space-time
coordinates. Such a behaviour, it seems, contradicts the common sense, but the naturality
of the underlying geometry strongly suggests testing it experimentally. As we show below,
the Hamiltonian version of the Transition Principle is perfectly confirmed in this sense. In
[8] we studied in detail the dynamics of a post-Galilean harmonic oscillator based on the
Transition Principle. The results obtained there show the phase portrait of this system to be
intrinsically self-consistent. We also note that, independent of the possible physical rele-
vance, the dynamical systems constructed on the basis of the Transition Principle generalize
naturally billiard systems and as such renew the park of mathematical toys to enjoy.

By studying the geometry of singular Lagrangians we observe a simple but, it seems,
very important fact: any Lagrangian, however degenerate it is, admits the corresponding
Hamiltonian field, which is aelative one along the Legendre map (in this connection see
also [13-17]). We demonstrate its utility by describing by its help the constraint algorithm
for constrained Lagrangians in few lines (in this connection see also [13].

Finally, itis worth stressing that the analogue of the presented formalism can be developed
in field theory as well, which we hope to do in a separate paper.

2. Relative Hamiltonian vector field
2.1. Relative vector fields

The notion of relative vector field is a key one for our purposes. Let us recall it briefly. Let
M andN be two differentiable manifolds and |1t : M — N be a smooth map. felative
vector field on N along s by definition a derivation of the algeb€x® (N) with values in
the algebraC*° (M), considered as @& (N)-module with respect to the multiplication

¢fd=efF*(¢)f, feC®M), ¢ e CP(N).
In other words, amR-linear operator
X : C®(N) —» C®(M)
is a relative vector field along if it satisfies the Leibniz rule

X(fg) = F*(f)X(g) + F* (@) X(f), f g€ CTWN),
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If f e C°°(M)andX is arelative vector field along, thenfX is also a relative vector field.
Therefore, relative vector fields alogform aC° (M)-module denoted bP(N, M; F).
SinceC® (M) is aC*(N)-module,D(N, M; F) can be considered ag’&° (N )-module:
(X,8) = F*(g)X, g € C®(N).

Example 2.1. D(M, M; idy) coincides with theC*°(M)-moduleD (M) of vector fields
onM.

Example 2.2. Let M C N be a submanifold, theR(M, N; o), o being the inclusion map,
is theC* (M)-module of smooth fields of vectors tangentMat points ofM.

Example 2.3.If X € D(M) andF : M — N is a smooth map, theX o F* €
D(N, M; F).

Example 2.4.1f Y € D(N),thenF*oY € D(N, M; F).

As in the case of usual vector fields, one can associate with each relative vector field
X € D(N, M; F) the section
xeMwr X, € Tp)(N)
of the pullbackF*(r) of the tangent bundle : T(N) — N given by
Xx(@)=[X(@I(x) Vg e CTN).

The same formula, read from right to left, associates with each sectidit @f) an
element ofD(N, M; F). ThusD(N, M; F) may be identified with the&°>°(M)-module
I'(F*(m)) of smooth sections of* (7). This identification shows that a relative vector
field X can be expressed in terms of local coordinates as follows(det. . , x;,,) and

(y1, ..., yn) be the local coordinates af andN, respectively. Then
n 8
X=) X'(x) — ,
Z ) dyi F(x)
i=1

or, equivalently

X = Zx"(x) (F* o %) ,

i=1
with X’’s being smooth functions oM.
LetF, : M — N, Fp = F, be a deformation of. Then the operator
dF;
dr |,
is, as itis easy to see, a relative (alafgvector field onV. Conversely, any relative vector

field can be represented in this form. By this reason, relative vector fields &lcarg
interpreted naturally as infinitesimal deformationgrof

L CO(N) — C®(M)
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A number of natural operations with differential forms, general covariant tensor fields,
etc., involving usual vector fields can be extended to relative vector fields. For instance, if
X € D(N, M; F) theC*(N)-homomorphism

ix . AK(N) - AL
between the module @tforms onN and that of(k — 1)-forms onM is defined by
(ix(@)(X1,..., Xp—l)(x)cEfU)F(x)(XXv di F(X1lx), ..., dx F(Xp—1|x))

with X; € D(M), x € M. As in the usual case, we will sometimes wrke| w instead of
ix(w).
If X =Y o F* withY € D(M), then, obviously,

X_|o=Y_|F*w).
Similarly, if X = F* o Z, with Z € D(N), then
X o= F*(Z_|w).
Evidently, it holds
ix(@A p) =ix(@) Ap+ (=1%o Aix(p). 1)
Now the Lie derivative ofv € A¥(N) alongX is defined as
Lx(w) = X(a));fXJ dw + d(X_Jw) € A¥(M).
The Leibniz rule forL x

Lx(@ A p) =Lx(@) Ap+ oA Lx(p),

results easily from (1).

In fact, the Lie derivative along a relative fielican be defined for any natural covariant
field, for instance for covariant tensors. In the last case the Leibnizryl® ® 7) =
Lx(®) ® t + 9 ® Lx(t) gives the inductive definition of the Lie derivative for general
covariant tensor fields.

2.2. Relative Hamiltonian vector field

In this section is introduced a relative vector field along the Legendre map, which gener-
alizes the notion of Hamiltonian vector field and is a very useful tool for studying degenerate
Lagrangians. A geometrical construction equivalent to this notion was already considered
in [13-16] following a suggestion by Kamimura [17]. In particular, in [13—-15] some appli-
cations to constrained systems were given.

Let M be the configuration space of a dynamical system, described by the Lagrangian
L € C*(T(M)). Consider the Legendre map associated With

L T(M) — T*(M)
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defined by
[ﬁ(é)](n)if(dgL)(as(n)), §.nely(M), geM,

whereag : T,(M) — T:(T,(M)) is the canonical isomorphism between the vector space
T, (M) and the space tangent to it at a pdini is locally described by equations:

q9i = qi, pi = Ly (q,v),

where(qs, ... , q,) is a local chart ofM and (q, v), (¢, p) are the corresponding charts
onT (M) andT*(M), respectively. The differential of is expressed with respect to such
coordinates by the matrix

1 0

) 2
qu Lyy ( )

L) = H

wherel, Oare the: x n identity and null matrices, respectively, abg, = (Lu,q;)i, j=1.....n,
va = (Luiv‘,')i,j=l,... -
Associate withL the following relative vector field along:

X1 @Xi:vi 3q;

o 3)

+ ) Lg(g.v) —
L(g.v) Z ! 3Pz

L(q, v)

This field is called theelative Hamiltonian fieldassociated witlL by the reasons below.

Proposition 2.5. X; does not depend on the choice of local coordinates on M and N.
Hence, the correspondenée— X is a natural differential operatar

Proof. Namely, one mustcheckthatthe componéntd.,) of X; inthe basigd/dq, 9/9p)

of Tz4,»)(T*(M)) change according to the transformation rules induced by a change of
coordinateg — ¢’ = ¢’(q). Itis easy to see that if

s—z% b= Y+ Y b

is a vector tangent td™* (M), then

aq"
=Y, o
i

b;:Z[Z i (g;]k)pk:|a,+z : (4b)

agi

dq
I J ..
v = Zi o (5)
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for j =1,...,n.So, one has to check that (4a) and (4b) holdsfor= v;, b; = Ly, (g, v),
a; = v, b, = qu;(q’, V), (g, p) = L(g,v). Egs. (4a) coincide with (5). As for (4b) one
has

oV

3;
Ly, v)——(L(q(q> v(q', v)))—Z . +2ka8/

=St + St ®
i

But in view of (5)

9 92 92 dq! 3 [d
§=Zaq§i}3 2 Tapi g = Dy (‘1) 2 ™)

3q;0q’; = 9,
which shows (6) to be identical to (4b) in the considered situation. O
Let
n
E(g,v)= i Ly, (q,v) — L(q, 8
(q v)def;v, w(g,v) = L(g, v) )

be the energy function associated with Lagrandian

Proposition 2.6. Let L be non-singular, i.eC is a diffeomorphism. Then
X, =L*oXH,

whereX y is the Hamiltonian vector field ofi*(M) corresponding tod = (L~ 1)*(E).

Proof. A straightforward computation shows that
X, Q= —dE, 9)

whereQ2 = ) ,dp; A dg; is the canonical two-form ofi™*(M). By applying now(L£~1)*
to (9) one obtains

(L™H* e Xp) Q= —dH
SinceX g is by definition the unique solution of
Xy Q= —dH,
one can conclude that
=LY o XL O

It is worth stressing that Eq. (9) defines the vector fi¥ld uniquely up to a relative
field Y such that_| 2 = 0. Since2 is non-degenerate th& (M)-moduleD of relative
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vector fields alongC that annihilate is generated by relative fields of the foufif o Z,
with Z € D(T*(M)) such thatZ*(Z_|2) = 0. The last condition means that|Q e
AL(T*(M)), with

AZ(T*(M)) = {0 € ANT*(M))|L*(@) = 0}.

Note that for a generic Lagrangian functibnhe corresponding Legendre map is a local dif-
feomorphism except foranowhere dense subsgt af). Obviously,A%(T*(M))hm =0
for such a Lagrangian. So, the relative Hamiltonian fi}dis uniquely defined by (9) for a
generic Lagrangiah. On the contrary, solution of (9) is not uniqueﬁf’b(T*(M))th +
0, which is equivalent to the fact th@t degenerates on an open subseZoM). This
discussion, together with Proposition 2.6, shows that (9) admits a una&jueal solution,
namelyXy .

If

0 0
X =) a(qv)y=— + ) bi(q,v)—,
Xi: ig 94 XL: i\g api

then Eq. (9) looks in terms of local coordinates as

Ly —1 | Eq
L,, O | Ey

a
b

)

witha = (a1, ... ,a,), b= (b1, ... ,by).
2.3. An application: the constraint algorithm

We conclude this section by sketching how the relative Hamiltonian formalism can be
used to determine the consistency conditions for constrained Lagrangian systems. The
constraint algorithmso obtained is, of course, a well-known procedure, going back to
the Dirac—Bergmann theory of constrained Hamiltonians, and revisited later on by several
authors (see [6,13] and the references therein). However, the geometric interpretation of
the algorithm by means of the relative Hamiltonian vector field looks more natural and
transparent than the previous ones.

Itis useful to notice that the Euler—Lagrange equations

1 0 ]
H Th=|" (10)
Lyg Ly ||| v L,
corresponding to the Lagrangidncan be represented in an invariant form as
ZpoL* =Xy, (11)

with Z; = ¢(3/9q) + v(d/dv) being the vector field off (M) whose integral curves are
the phase trajectories. Notice that/ifis a constrained Lagrangian, iJé.,,| = 0 on the
whole phase space, then there is, in general, no vectordield D(T (M)) satisfying Eq.
(11). However, there may exist a maximal submanifld= 7 (M) and a vector field; e
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D(W) satisfying (11). The constraint algorithm enables one to find such a submanifold by
a finite number of steps. First, notice that in view of Eq. (Ltan be characterized as the
maximal submanifold such that; |y is tangent toZ(W). Consider the sequen¢®, } of
submanifolds off (M), defined by induction as follows:
1. Wy =T (M),
2. Wyp1={x € W,|X |, is tangent taZ(W,)}.

Obviously, this sequence stabilizes in a finite number of steps. If theiass not
empty, it coincides with¥. Notice that the above formulation of the constraint algorithm
is more agreeable, from the computational point of view, than the standard approach (see,
for instance, [6]). In fact, ifZ(W,) is given by independent equations

gilg,p)=0, i=1...,s,

with s being the codimension af(W,), then the next terni, 1 of the sequence is given
simply by the equations

8i(L(g,v)) =0, X1(gi)(g,v) =0, i=1....s.

It can be shown that the procedure above is equivalent to the standard reduction of a differ-
ential equation to the formally integrable form.

That given above is just an example of the usefulness of the relative Hamiltonian formal-
ism in the study of constrained systems and gauge theories. A more detailed exposition of
these topics will be given in a separate paper.

3. Singular Lagrangians

In this section we consider a special but important class of non-regular Lagrangians,
whose Legendre maps degenerate only along submanifolds of codimengidrhis class
contains all generic Lagrangians. We use the term “singular” for such Lagrangians, reserving
the term “degenerate” only for the Lagrangians with everywhere degenerated Legendre map.

3.1. Submersions with folds

First, recall briefly some basic facts from the theory of stable mappings, which will be
needed below (for further details and proofs see, for instance, [5]).
Let M, N be two manifolds, with dinM = m > dim N = n and let

F:M—N

be a smooth map. Denote b§* (M, N) the space of 1-jets of maps froM to N. If
(x1,...,xm), (y1,..., yy) are two local charts oM and N, respectively, then a system
of local coordinates od (M, N) is given by(x, y, p), wherep = (pij),i=1...,n,
j=1...,m.Letus consider the & jetgraphof F, i.e. the map

JjYF M — JYM, N)
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given in local coordinates by
1Ew = (x, oo, )
/ def \"’ " dx '

Let S1 ¢ JY(M, N) be the submanifold of 1-jets of corank 1, i.e.
S1={(x,y, p) € JX(M, N)|rankp = n — 1}.
Let S1(F) = (j1F)~1(S1). We assume thatl F is transversato Sy, i.e.
Imd, j1F + Tr()(S1) = Ty JH(M, N)  V¥x € S1(F). (12)

In terms of local coordinates, condition (12) is equivalent to the fact that the minors of order
n of the Jacobian matri® F/dx, which vanish onS1(F), have only simple zeroes on it.
ThenSy(F) is a submanifold oM having the same codimension, namely- n + 1, asSy

in JY(M, N) [5].

Definition 3.1. A pointx € S1(F) is called a fold point if
Ty (S1(F)) + Kerd, F = T, (M).

Definition 3.2. A smooth mapF : M — N is a submersion with folds if it satisfies
condition (12) and its singularities are fold points only. In such a case the submanifold
S1(F) defined above is called the fold locus Bf

Remark. An obvious consequence of the definition is that the restriction of a submersion
with folds to its fold locus is an immersion

Below we will use the following property of submersions with folds [5].

Theorem 3.3.Let F : M — N be a submersion with folds and lete S1(F). Then
there exist a system of local coordinates, ... , x,;) in a neighbourhood of a and a
system of local coordinatgs, ... , y,) in a neighbourhood of ' (a) such that:(1) a =
©,...,0), F(a) = (0,...,0); (2) the coordinate expression of F is

y1 = X1,

Yn—1= Xp-1,
Vn :x,f:l:---:i:x2

m:*

3.2. Legendre maps with fold-type singularities

Referring to Section 2.2 for the notations, consider the case wherdgular everywhere
except for a hypersurface C T (M). From (2) it follows thatS is given by the equation:

H(g,v) =0,
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whereH (g, v) = detL,,. AssumeS to be regular, i.e. that

diH #0 VxeS. (13)
Assume additionally the following transversality condition:

Kerdi LN T (S) ={0} VxeS. (14)

Itfollows from (14), in particular, that the rank of the matfix, isn—1,i.e.dimKerd. = 1

at any point ofS, and thatZ| is a local diffeomorphism betweehand£(S). Hence L is

a submersion with folds and according to Theorem 3.3 it can be represented locally in the
normal form

y1=x1,
- 15
Yon—1 = X2n—1, ( )
Yon = X3,

with respect to suitable local chafts, . .. , x2,) and(ys, ... , y2,) onT (M) andT*(M),
respectively. In view of (15) one easily finds that for every paint S there exists a
neighbourhood’ of x in T (M) and a neighbourhood of £L(x) in L(T (M)) such that: (1)
U\ S splits into two connected componeits U, suchthail (U1) = L(Uz) = VALUNS)
and (2)Ly, is a diffeomorphism; = 1, 2.

In other words, if£ is a submersion with folds, thefi(S) locally separates the image
of £ from its “local” complement inT*(M). As we shall see below, this almost obvious
property of Legendre maps with folds is essential to carry over the Transition Principle from
the Hamiltonian to the Lagrangian setting.

3.3. Kernel of the Legendre map and characteristics on the singular hypersurface

As it was remarked above, £ has only fold-type singularities then KeéfL is one-
dimensional and transversal$at any pointc € S. We will now point out some interesting
properties of the kernel and consider its relation with the characteristic distributién on
which, as we shall see, plays a fundamental role in the Transition Principle.

The following assertion is valid for an arbitrary Lagrangian.

Proposition 3.4. Ker dZ is tangent to the level surfaces of energy at any point of S
Proof. According to (2) one has
d
Kerd, L = {ba— € Tx(T(M))’ Lyyb = 0} , (16)
v

with the standard matrix notation. On the other hand, it results from (8) that
Ey = Lyyv, (17)

which shows thab" E, = 0. O
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Recall now the notion of characteristic distribution Snintroduced in [8]. LetQ =
> ;dpi A dg; be the canonical two-form ofi*(M). ThenL*() is a closed two-form on
T (M) degenerate at points 6f More exactly, we have the following proposition.

Proposition 3.5. Letx € S and letNull £L*(2), be the null space of*(Q2),, i.e.
Null £*()x = {& € T (T (M))|§ | L*(Q2)x = 0}.
ThenNull £*(2), is two-dimensional and contairk&er d, L.
Proof. In special coordinateg;, v) the pullback of2 takes the form

LY(Q) =) (Lujg — Lug;,) dgi Adgj — Y Ly, dg; Adv;.

i<j i,j
Hence Null*(2), consists of the vectows(d/dq) + b(d/dv) € T, (T (M)) such that

a

qu - qu va
b

Ly 0

0
_ H ° H | (18)
Comparing (16) and (18) one sees that Kef < Null £*(R2),. This shows that* (),
is degenerate if € S and hence the rank &*(2), is not greater than/2— 2. But since
Lls : § — L(S) is a diffeomorphism one has

2n — 2 =rank(Q|zs)) £y = rank(L* (Q)[s)x.
This shows that rank*(Q2), > 2n — 2. O

An immediate consequence of the Proposition 3.5 is that 8iil2) is transversal to
T, (S), so that their intersection is a limgtangent taS. This way we get a one-dimensional
distributionx — [, on S, calledcharacteristic distributionand its integral curves are called
characteristic curvesr characteristicsof S.

The characteristics are non-parametrized curves transversal to the filréaropfand
hence projecting biunivocally int¥. Lety : I ¢ R — T (M) be a characteristic &f and
lety = 7 o y be its projection inta. The problem of determining under what conditions
is y alifting of 7, i.e.

y=Ay (19)
forsomer € C*° (1), isrelated with the variational interpretation of the Transition Principle.

Theorem 3.6. Let L € C*®°(T'(M)) be a singular Lagrangian with folds. The following
three conditions are equivalent:

(a) Any characteristic of S is the lifting of its projection inta M

(b) Any pointx = (¢, v) € S, considered as an elementf(T, (M)), belongs terd, L.

(c) The fibresT, (M) C T (M) are tangent to the energy level surfaces at any point of S
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Proof. Equivalence of (b) and (c) obviously follows from (17). Let us prove the equivalence
of (@) and (b). Assume that (b) holds, i.e. that

Ly,yv=0 onS. (20)
Lety(t) = (¢(¢), v(¢)) be a characteristic curve 6f We have to show that

v(®) = A1)q(1). (21)
The curvey = Loy isacharacteristic of the hypersurfaes) with respect t&2, projecting
into the same curvg of M asy. Let

®(q,p) =0, e C(T*(M))

be a (local) equation af(S). Then the Hamiltonian fielk e = ®,9/dg — ®,9/9p is
tangent toy. By reparametrizing, if necessary, we can assume that y(¢) coincides
with the parametrization of as an integral curve of¢. As it is immediately seen from
the normal form (15) oL, it holds (locally) that

LX(D) = fH? (22)

for somef € C*°(T(M)). Hence, differentiating (22) with respectgpandv;, one finds
that, onL(S),

10

|0

Ly -1 @,
Ly 0 ||—-2,
with the derivatives ofd taken atL(q,v) = (g, Ly(q,v)), (¢g,v) € S. In particular,

L,,®, = 0, so that from condition (20) and the fact that cordnk = 1 it follows that
ons

)

D, =pv (23)

with u e C*(S). But, according to Hamilton equations associated with®, = ¢, so
that one gets (21), with = 1/p. O

Corollary of the proof. Lety (¢) be acharacteristicof S. Then (g (1)) eKerd,, ) L, with
ay ) being the canonical identification @f, ;) (M), q(t)=n (y (t)), and T, ;) (T; ) (M)).

Proof. Itis sufficient to notice thak, (g ()) = ©,(L(y (1))). O

This corollary suggests a natural way to parametrize characteristi¢sNdémely, lety
be such a characteristic afidbe its projection. Any pointg, v) € y corresponds to a
vectorv(d/dq)l,, tangent taVf (but not toy, in general) at the point € y. But this vector
is canonically identified withv(9/0v)|¢4,,) € Tig,v)(T;(M)), which can be univocally
represented as the sum of a vecigr € Ker(d{)(,,» and another vector tangent £
In this way one associates with any point y a vectorw, € T, (T4 (M)) = T,(M)
which, according to Theorem 3.6, is tangenftdHence we obtain a parametrizationyaf
and consequently of.
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Theorem 3.6 is illustrated with a special class of Lagrangians which appears frequently in
post-Galilean models of interacting particles [3,12]. One of them, a post-Galilean oscillator,
was considered in [8] with the purpose to exhibit the “jumping dynamics” resulting from
the Transition Principle.

Example 3.7. Consider Lagrangians of the form

L =L(q, Q(q,v)), (24)

where

0(q.v) = $v"G(g)

is a pseudo-Riemannian metric &, whose matrix iS1/2)G(g). S0,G(gq) is symmetric
and non-degenerate, for any pajng M. The singular sef of the corresponding Legendre
map coincides with the set of points at which the operator represented by the mateix

| Ly;v; I has a non-trivial kernel. Note that

Lyw=LG+L"A, (25)

with then x n matrix A = A(g, v) = (Gv)(Gv)T, and the prime standing f@/9 Q. If

v # 0,thenA is an operator of rank 1 whose image is generated by v€atarhile its kernel,

Ker A, is composed of vectorts such thab TGw = 0. There are two qualitatively different

cases: (1y ¢ KerA(qg,v) < Q(g,v) # 0, and (2v € KerA(q, v) & Q(g,v) = 0. Let

us consider them separately.

1. In this case by identifyind, (M) andT, (T, (M)) C T (T (M)) we see that the latter
space is decomposed into the direct sum

Tiy,v)(T4y(M)) = Ker A(q, v) ® {v},

with {v} = {w|w = Av,A € R}. S0, ifz = w + u, with w € Ker A(q, v), u € {v}, then
according to (25):

Lyw(w+u)=G(L'w+ (L' + v GuL")u).
Hence
w+ueKerLy, < L'w+ (L' +v"Gul")u = 0. (26)

So, Kerd, L = Ker L, (g, v) # 0 in one of the following cases:
() L'4+2L"Q =0, L' #0<% Kerdy,, L = {v}.
(i) L'=0, L'+ 2L"Q # 0 & Kerd L = KerA(q, v).
(i) L'=L"+2L"Q0 =0« Kerdyg,vL = Tiy,v) (Ty(M)).
As it is easy to see, in case (i) Ke£ds one-dimensional and is transversal to the
hypersurfaceS; = {L' +2L" Q = 0} except for its submanifolﬂ? ={3L"+2L"'Q =
0}. So, S1\So is composed of fold points. On the contrary, Kef b tangent taS, =
(L' = 0}.
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2. ltis convenient in this case to consider the direct decomposition
Tig,0(Ty(M)) = KerA(g,v) ® {Gv}, v #0,

where ImA(q, v) = {Gv} = {z]z = AGv, A € R}. Note thatA(Gv) = A(Gv) with
A eR.So,ifz=w+u,w e KerA(g, v),u € ImA(g, v), thenin view of (25) one has

Ly(2) = G(L'w+ L'u) + AL"u = G(L'w + L'u) + AuL"Gu,
with u = £ Gu. This shows that
L@ =0« (L'w+AuLl’v)+ L'u =0.

SinceL’w+AuL”v € Ker Awe see thal’Au = 0. Thisimpliesthateithet’ (g, Q(v)) =
OorA(g,v)u =0, i.e.u = 0. Inthe last casg = 0 andL’'w = 0 (w # 0), so we find
again that.” = 0. HenceS N {Q(g, v) = 0} C S».

Thus we see thaf = S U S, andSl\Sf consists of fold points, whilé is not a generic
singularity of L.

3.4. Characteristic curves and symmetries

Inthis sectionitis shown that symmetries of a Lagrangian respect the characteristic curves
of its singular hypersurfac&. Namely, the first integral of Euler—-Lagrange equations cor-
responding to an infinitesimal symmetry of the Lagrangian is constant along characteristic
curves.

First, recall some definitions. L&t : M — M be a smooth map. Its natural liftings
F: T(M)— T(M)andF : T*(M) — T*(M) are defined by formulas

F|Tq(M):qua qgeM,
and
FIT;(M) = (d,F)Y, qeM,

respectively. Obviously, ifF is a diffeomorphism, then such are algoand F.Fisa
symmetnof a LagrangiarL if £*(L) = L. Further, itis easy to see thatAfis a symmetry
of L, then

LoF=FoL. (27)
Another relation we need is (see, for instance, [11])
F*(p) = p, (28)

wherep = )" p; dg; is the Liouville form onT*(M).
Similarly, any vector field € D(M) can be lifted canonically to both(M) andT*(M).
Denote these liftings by? e D(T(M)) andX € D(T*(M)), respectively. If{ F;} is the
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flow generated by, thenX (resp.,X) is the vector field generating the floy#;} (resp.,
{F,}). The infinitesimal analogue of (28) is

X(p) =0. (29)
Recall thatX € D(M) is called an infinitesimal (non-hidden) symmetryloff

X(L) =0.
If X € D(M) is an infinitesimal symmetry af, then

Xol*=L*oX, (30)

which is the infinitesimal analogue of (27).
According to Noether’s theorem, the function

Ix = LX(p)(X) (31)
is a first integral of the Euler—Lagrange equations.
Theorem 3.8. Iy is constant along the characteristics of S
Proof. SinceX(p) = X_|dp + d(X_|p), from (29)—(31) we get
dix = —X_|L£*(Q).
Hence, ifx € S andé € T, (S) is a characteristic vector, then

E(Ix) = —L*(Q)x(Xy, &) =0, 0

4. Transition Principle

The Transition Principle discussed in this section is a prescription describing the be-

haviour of a dynamical system in soriteegular situations when the standard “smooth”

principles are no longer applicable. This principle was introduced by one of the authors
(see [10]) in the context of Hamiltonian mechanics when the Hamiltonian function is
discontinuous. The examples given below and in [8,10] show it to be “experimentally”
confirmed. On the other hand, the concept of relative Hamiltonian vector field associ-
ated with a Lagrangian allows one to observe that the geometrical background of the
Hamiltonian Transition Principle is essentially the same as that for fold-singular Lagrangians.

This motivates the “Lagrangian” Transition Principle as it is presented below.
4.1. Hamiltonian formulation
Let us recall the Transition Principle for discontinuous Hamiltonians.(let2) be a

symplectic manifold. Suppose thhis divided by a hypersurfadginto two closed domains
@, ®_ and that the Hamiltonian function of the system is bi-valued olm other words,
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the restrictionsHy = H|e, areC*-smooth in their respective domains, but they do not
necessarily coincide on the common boundary

Recall [11] that orT" is defined the one-dimensional distributioncbfracteristic direc-
tions Such distribution associates with each paird I' the characteristic line

lxd=ef{$ € Ty (P)E Q)7 = 0}
The integral curves of this distribution are calldthracteristicof I.

Definition 4.1. Letx e T'. We say thak is anin-point(resp. arout-poiny for H if Xz |,
is directed toward® .. (resp. toward®_). Similarly, in-and out-points fof_ are defined.

Definition 4.2. Letx € I andE = H,(x). Denote byy, the characteristic of passing
throughx. A pointy € y, is calleddecisivefor (x, Hy) if itis an in-point for H,. (resp. for
H_)andH,(y) = E (resp.H_(y) = E). Analogously, one can define decisive points for
(x, H).

Transition Principle (Hamiltonian formulation ). When the moving phase pointreaches
from®_ (resp, ®_) the hypersurfacE ata pointx, its trajectory is to be prolonged, starting
from any decisive point fare, Hy) (resp, (x, H-)), as the trajectory of the corresponding
Hamiltonian

Remark. The Transition Principle is applied as well to the situation when the Hamiltonian
H is smooth but the phase space has a non-empty bouddary such a case one has just

to put formallyI’ = 0®, &, = &, d_\I' = ¥, Hy = H and H_ = oo. In other words,
only in-and out-points foH = H are to be taken into consideration. Elastic collisions of
rigid bodies (see the example below) are described by the Transition Principle in this form

It is worth stressing that, according to the Transition Principle, the phase trajectory gen-
erally splits into several parts after having reached the hypersurfaBech behaviour is
not, however, abnormal and happens, for instance, in geometrical optics (see [8]) when a
light ray splits into reflected and refracted rays, in perfect accordance with the Transition
Principle.

We remark that from the above principle it follows that the energy of the system does not
change after an impact with. In the example below we will see that in some special but
important cases also other first integrals of the equations of motion are preserved.

The Transition Principle can be modified naturally to take into account further peculiari-
ties of the studied physical system. For instance, the energy can be replaced by an alternative
constant of motion in the formulation of the principle, or some further rules describing the
energy balance in the process of impact may be added (non-elastic collisions, etc.).

Example 4.3(The Transition Principle for natural Hamiltonians). Let us consider the case
when® = &, U &_ is the cotangent bundI&*(M) of the configuration spac# =
M, UM_ andl’ = 7 ~1(S), with § = M NdM_ being a regular hypersurface M and
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7 : T*(M) — M being the bundle projection. Further, let each of the Hamiltonkins
H_ be of the form

Hi(g,p) = p'Gi(q)p + Vi(q), (32

with Vo € C*° (M) as the potential energy an@.. as the Riemannian metric oWl
(kinetic energy). LetF(¢g) = 0 be the equation of and hence of” too (more exactly,
7*(F) = 0 is the equation of"). Then the characteristics d@f are described by the
Hamilton equations

C}j:FpiZO, PlZ_Fq,(C])

together withF (¢) = 0. Hence, the characteristic passing through the goiat(g, p) € T
is the liney;z C Té*(M) given in parametric form by

qi(t) =qi, pit) = pi— Fg4(@)t.

Suppose that the phase point, coming frdm, reachesl” at the pointx. According
to the Transition Principle the part of the trajectory reflected frbnstarts from the
in-points for H; at which the characteristig; intersects the hyperquadri€, (¢, p) =

H. (g, p). This intersection consists of the two points= x(0) andx* = x(¢*), with

t* = 2(F] G1p)/(F] G Fy) (all the functions are evaluated &t Note thatX y, (F) =

—XF(Hy) = 2F, G4 p. Therefore,

¥ =x* <& Xy, tangent tol" at ¥ & y; tangent to{H; = H,} at .
If x £ x*, then
X, (F)lys = —2Xpy, (F)lz,

so that ifx is an out-point forH,, x* is an in-point for it (and vice versa). Therefore, if the
phase point reachds at x transversally, then according to the Transition Principle there

is one and only one “reflected” trajectory issuing frafn As for “refracted” trajectories,

they can be two, one or none, depending on how the characteristic straight line intersects
the quadrid H_(gq, p) = Hy(X)}.

The following fact concerning the relation between symmetriedofand the charac-
teristics onl" is analogous to Theorem 3.8. So, we omit the proof. For the notation, see
Section 3.4.

Theorem4.4. LetX € D(M)be anon-hidden symmetry of the HamiItoniarh.bl)?(H) =
0. Then the corresponding first integral of Hamilton equatignsX) (se€[11]), is constant
along the characteristics df iff X is tangent taS = 7 ~1(I").

Example 4.5 (Elastic collisions between rigid bodies). L&Y, C> be two rigid bodies
with perfectly smooth outer surfaces, and assume that in case of an impact between them
the total mechanical energy does not change (elastic collision). Then one can think of the
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12-dimensional configuration spas¢ as the union of two domaingZ,., corresponding

to the admissible configurations, in which the motion is described by a Hamiltonian of the
form (32); and a domain/_, formed by the configurations such th@; N C2)° # @,

with which one associates a potential energy “identically equaldo”. In other words,

the rigidity constraints do not allow for refracted trajectories.

The value of the momengaafter a collision can obviously be determined in an elementary
way by taking into account the integrals of motion (total mechanical energy, projections
of linear and angular momenta). Apart from mechanical energy, all the other integrals are
associated with one-parameter groups of space symmetries of the system (invariance with
respect to translations and rotations), and it is evident that such isometry groups leave
fixed the hypersurfacd = oM N daM_ of tangency configurations. Hence, according
to the Theorem 4.4, the corresponding first integrals is constant along the characteristics
of I' = 7~1(S). Therefore, by applying the Transition Principle we automatically get
the conservation of all the above integrals of motion. This also shows that the Transition
Principle leads to the same result as the classical theory in describing elastic collisions.
Moreover, it continues to work as well when the lack of symmetries does not allow symmetry
considerations.

4.2. Lagrangian formulation

The Transition Principle, originally considered only in the Hamiltonian case described
above, can be extended to the Lagrangian situation, as it has been shown for the first time
in [8]. Namely, suppose that a dynamical system is described by a singular Lagrangian
with folds as in Section 3.2. Then the motion of the system is uniquely determined out-
side the singular hypersurfadgeby Euler—Lagrange equation (10), or, equivalently, (11),
whereZ; = ¢(3/9q) + v(3/dv) € D(T (M)\S) is the Lagrangian vector field associated
with L. On the other hand, Eg. (10) cannot be solved uniquely with respécbmaS. So
accelerations are undetermined $nin general, and there are discontinuities in the mo-
tion. The Lagrangian formulation of the Transition Principle is a natural way to determine
these discontinuities. First, let us extend to the Lagrangian case the notion of in-and out-
points.

Definition 4.6. Letx € S and let the neighbourhodd of £(x) in L(T (M)) be given as at
the end of Section 3.2. A pointe S is called an in-point fol_ if X |, is directed towards
V, and out-point otherwise.

X is generally transversal #(S) everywhere or$, except for a (possibly non-regular)
(2n —2)-dimensional submanifoléy . This, in turn, contains a submanifa$d of dimension
(2n — 2) on which X is tangent afS1, etc., just as in the case of the constraint algorithm
(see Section 2.3).

Definition 4.7. Letx € S. A pointy € S is called decisive fok if it is an in-point such
thatE(y) = E(x).
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Given the above definitions, the extension of the Transition Principle to the Lagrangian case
is obvious.

Transition Principle (Lagrangian formulation). When the phase point reaches the
hypersurface S at a point x, its trajectory can be prolonged, starting from any point decisive
for x, as a trajectory of the Lagrangian vector fiefq .

Recall that the characteristics of a singular Lagrandiaare naturally parametrized
curves, according to the construction of Section 3.3. The physical meaning of this parameter
is at the moment not very clear. It seems natural to interpret it as the time during which the
phase point remains captured by the singular surface

Obviously, physical applications of the Lagrangian Transition Principle depend on whether
there exist physically meaningful Lagrangians with fold singularities. For instance, are
the singularities appearing in various post-Galilean models (see [3,12]) just the artifi-
cial by-products of the adopted approximation procedure? In other words, the dilemma is
whether the presence of singularities indicates only that the Lagrangian model is inadequate
or, on the contrary, a new phenomenon. An experimental test of it would be very interesting.
From the mathematical point of view, singular Lagrangian dynamical systems generalize
naturally the billiard systems and as such are worth being studied. In [8] such a dynamics
(post-Galilean oscillator) was studied in detail, showing its intrinsic self-consistency.

4.3. Transition Principle and the Weierstrass—Erdmann conditions

A natural question whether the singular Lagrangian dynamics based on the Transition
Principle corresponds to a variational problem is briefly discussed in this section. In fact,
functionals corresponding to singular Lagrange densities appear in various mathematical
problems and have been studied by various authors. The following classical theorem is one
of the main results in this direction.

Theorem 4.8(Weierstrass—Erdmann conditiong}onsider the action functional

b
Flg)= / L), 4(0)) dr (33)
def/,

defined on the space of piecewise smooth functjonga, b] — M with fixed end-points
q'.q" € M. Letg(t) be an extremal fotF, and suppose its derivative to have a jump
discontinuity at* €]a, b[. Then the following two conditions must be satisfied:

1. E(t*—) = E(t*+),

2. L, (t*=) =L, (t*+), i=1,...,n,

wherebyf (+*+), f(t*—) we denote the right and left limit of at ¢*, respectively, and the
energy E and momenta,, are evaluated og (7).

Proof. See, for instance, [4]. O

According to Hamilton’s principle, the variational problem associated with the functional
(33) is equivalent to Euler—Lagrange equations outside the singular hypersfirfandghe
other hand, it is easy to see that the derivative of a broken extrigmabf F has a jump
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atr* only if (7(t*), g(t*)) € S. At a first glance, it would seem natural to interpret the
extremals of (33) on the class of piecewise smooth curves. However, such an assumption
presents serious drawbacks from the dynamical point of view. First, the behaviour of the
systemon S is not taken into any account. The natural geometrical structure described
above is simply ignored and the singular hypersurface itself is just considered as a “black
box”. Furthermore, the second Weierstrass—Erdmann condition is a consequence of an ad
hoc restriction on the class of possible trajectories. Namely, it is assumed that the extremal
curveq(t) has discontinuities only in the derivative, i.e. jumps of position are not allowed.
That this need not necessarily be the case is shown by the following example.

Example 4.9. Consider the Lagrangian function

v2 v2
L(g,v) = —-m¢& 1—6—2—kq2(1+ﬁ>, (34)

describing the motion of a one-dimensional relativistic oscillator in the post-Galilean ap-
proximation [7,8]. The constants, g, k, ¢ are the mass and the charge of the oscillating
particle, the elastic constant and the light velocity, respectively. The energy function corre-
sponding to (34) is

mcé v?
Bl v = V1—v2/c? " qu (l - ﬂ) ’

Fig. 1. The curves drawn by solid lines di€ = cons{ and its image along.
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while the equation of is

5 mc

T = ka2

Asitis showninFig. 1, for a sufficiently high value of the energy the phase point reficties

the pointx = (g, v). Then, according to the Transition Principle, the motion continues after
the jump at the point* = (g, —v). Onthe other hand, Weierstrass—Erdmann conditions tell
that after the system reacheds trajectory can be prolonged no more, becalise™) =
—L,(x) # 0. Inotherwords, time ceases to exist for this system. So, the Transition Principle
seems to be more reasonable in the dynamical context.
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